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Abstract

The interpretation of hot-wire voltage fluctuations
induced by an unsteady compressible flow field is pre-
sented. The use of fluctuation mode diagrams to deter-
mine the type and amplitude of disturbances detected in
an unsteady flow is illustrated. Some of the examples
are the following: unsteady flow in an oscillating
compressible laminar boundary layer, the potential field
near such a boundary layer, and the disturbances
present in a supersonic wind tunnel. The results are
compared both with theory and with other measuring
techniques. A practical computational scheme is given
for the determmination of unsteady flow quantities from
hot-wire results,

Introduction

The extension of the hot-wire technique from low-
speed to high-speed compressible flows provides a use-
ful tool for determining fluctuations in compressible flow
fields. The work of Kovdsznay [1, 2, 3] and Morkovin
[4] gives practical computational schemes for deter-
mining the unsteady quantities in supersonic flow fields.
This, plus the experimental determination of hot-wire
heat loss and recovery temperature relations [1, 2, 5, 6],
enables fluctuation measurements to be made. The high
frequencies present in supersonic flow fields require
increased frequency response in the new hot-wire
amplifiers, and this is now attainable [3, 7, 8]. The
increased frequency range also demands the use of
extremely fine wires to reduce the thermal lag and to
give reasonable signal-to-noise ratios.

With the development of the method of interpreting
fluctuation measurements, with the law for the loss of
heat experimentally determined, with the improvement
in hot-wire amplifier frequency response, and with the
feasibility of using extremely fine wires, it is now pos-
sible to determine the unsteady flow quantities present
in many supersonic flow fields.

In order to show the practicability and the
applicability of the hot-wire technique at supersonic
speeds, several experiments which were conducted at
the Jet Propulsion Laboratory will be described. In
some of these experiments different techniques, all
involving the use of a hot wire, were applied to get the
same result. The measurements also gave insight into
the sources of the unsteady flow fields present. Some
comparisons of results were made with the theoretical
solutions,

*This paper presents the results of one phase of research
carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under Contract NAS 7-100,
sponsored by the National Aeronautics and Space
Administration.

Fluctuation Sensitivities and Mode Diagrams

In order to make fluctuation measurements with a hot
wire, it is necessary to know a steady-state heat loss
law. Using simple dimensional analysis, it may be
shown that Nu = Nu (M, Re, 7,, ), where Nu is the Nusselt
number, M the free-stream Mach number, Re the wire
Reynolds number, and r,, a wire overheat parameter.
Laufer and McClellan [5] found that for M > 1.3,

Nu, = Nu,(Re,, 1y, ) only where air viscosity and
conductivity were determined from the static temperature
T, behind the normal shock wave. Since T can be fair-
ly well approximated by the total temperature T, it is
more convenient to use the total temperature instead of
T, as the reference temperature in the heat loss law.
The Nusselt number is still a function of Rer only and
reasonably independent of Mach number for ¥ > 1.2

[4 and 7].

The Nusselt number approaches a constant value as
the wire overheat value goes to zero, and the unheated
wire equilibrium temperature is the recovery temperature
T . Experimentally, it is found that n = n(M, Re )=
T,/Tr. The effect of neglecting the Mach number
dependence results in a small error in the fluctuation
sensitivities for ¥ > 1.5.

Assuming that the time constant due to the heat
capacity of the hot wire has been determined experi-
mentally (square wave method, [8]), the basic hot-wire
equation may be written as

A A ATy
Ae = =Aep il Ae, kel + Aep
P U TT

where Ae is the voltage fluctuation across the hot wire;
Ap, Au, and ATt are the fluctuating components of the
mean flow, density p, velocity U, and total temperature
Tt ; and Aeyp, Aey,, and Aer ate the sensitivity co-
efficients of the hot wire. From Morkovin [4], the
sensitivity coefficients are given as

: : ReT aNuT A"u ReT an
Aep =ek Aw -
Nup JRep Toor n  JdRep
Ay (M 9Ner 1y 9
Ae =Aep+eE'-—— —
a \Nup oM 7, 7 oM
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where e is the mean voltage across the wire. The three overheat values, three sets of sensitivity coef-
various parameters can be calibrated directly; their ficients are obtained. The resulting three independent
definition and method of calibration will be found in the equations may be solved for the three unknowns.
Appendix. For most applications the Nusselt vs In practice the hot wire may be operated at more than
Reynolds number and recovery temperature vs Reynolds three overheat values and the results plotted in the
number relations need not be determined in situ. fluctuation mode diagram employed by Kovasznay [2].
Provided that end loss effects due to finite wire length The fluctuation mode diagram is a plot of Ae'/Aer vs

are taken into account, the Nusselt vs Reynolds relation  Ae, /Aer. As can be seen from the mean square of the
for the heat loss as determmed by Laufer and McClellan  hot-wire equation given above, a plot of Ae'/Aer vs

[5] and others may be used for calculating the quantity Ae, /AeT must be a conic section with the three un-
(Re/Nu) (0Nu/dRe). For a wire Reynolds number greater  knowns involved as the constant coefficients of the
than 1 the recovery temperature data of Laufer and quadratic equation. Therefore, only three unknown
McClellan are adequate. . quantities may be determined by this method, and
For M>1.2,Ae,=Ae =Ae where Ae is the sensitivity operating at many overheat values only helps reduce the
to mass flow fluctuations. The hot-wire equation may scatter. No further information may be obtained even
then be written as from the original form of the equatxon which in the mean
AT square would have six unknowns (Ap’, Au’, AT,
Am T Ap Au, ApAT, and AuAT ).
Ae = -Ae, ter Unfortunately, the mass flow and total temperature
m Ty fluctuations are not the characteristic parameters of an

unsteady supersonic flow field. The application of small-
perturbation analysis to the equations for conservation
of momentum, energy, and mass, the equation of state,
and the division of the fluctuating flow field into its
irrotational, solenoidal, and harmonic parts leads to a
separation of the ﬂuctuatmg flow quanntxes into three
m Py p v modes [2, 4]. These are the vorticity 7, entropy o, and
sound 7 modes. If the fluctuation field is strong, thete

where

It
|
+

The mean square of this hot-wire equation is

PR RCE IS

or
9 AT 2 , A 2 2
Ae' Ty Ae, Am' AT7 Sen Am'
= -2 R, +
Aep Tr Aep r m TT Aep m
where are moderate second-order interactions; whereas, if the
AmAT field is weak, the modes satisfy separate linear dif-
R = T ferential equations. The hot-wire equation then becomes
mr Am'AT. Ae =o-Aes+ 1+ Aer+ 1+ Aeyy
r The new sensitivity coefficients are given as
is the correlation coefficient, and the prime denotes the Ae = Ae_+ al er
root mean square of the fluctuation; e.g., g £
Ae' /(A_e)z Ae, = BAer - Ae, .
The three unknowns in this equation are ATy, Am', and -1 MYAe,.— — Ae - Ae
RmT If the fluctuation measurements are carried c;ut at A €r = & (-0 nx‘[) °r M ¢ ?
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where aand 3 are functions of Mach number ¥ (see
Appendix) and the ratio of specific heats y. In the
sound mode fluctuation sensitivity, n, is the direction
cosine of the normal to a plane sound wave. It is
possible for n, to have more than one value if there are
several sound wave directions.

The fluctuation variables given as a function of the
modes are

AT
— = o+ {(y-D7
T
Ap
— = 0+ 7
Je,
Ail‘, nx77
= T +
U M
AP
—_— =T
P
ATy Bn,

aoc + BT+ [y -Da~+

T M

Am "x
—_— -0+ T+ -— )7
m M

In general it is not possible to decompose hot-wire
measurements into the individual modes. ‘orkovin [4]
suggested a scheme for determining the entropy,
vorticity, and sound modes; this method is not only
useful when at least one of the modes or certain of the
correlations may be neglected, but gives insight into
the fluctuations which may be present. By plotting the
fluctuation mode diagram of Ae'/Aecvs Aer/Aecit is
sometimes possible to determine which fluctuations or
correlations may be neglected. The usual shape of the
diagram in this coordinate system is the rectangular
hyperbola, and the detailed method for graphically
reducing the data is described by Morkovin [4].

Experimental Equipment

The experiments werze conducted in the Jet Propulsion
Laboratory 18 x 20-in. supersonic wind tunnel. A
detailed description of the equipment used may be found
in [8, 9, and IOF]).

All of the hot wires were 90% platinum and 10%
thodium with diameters of 0.00005 or 0.0001 in. and
were 0.010 to 0.020 in. long. A typical boundary-layer
probe consisted of a razor blade 0.060 in. wide and
0.004 in, thick attached to a strut. Two jeweler’s
broaches were glued to the blade and extended 0.050 in.
in front of it as shown in Fig. 1.

The Shapiro and Edwards Model 503 constant-current
hot-wire set had an amplifier with a frequency response
up to 300 kc. It had an equivalent input noise less than
that of a 1000-ohm resistance and an input transformer
which could reduce the input noise effect by a factor of
at least four.

Figure 1. Hot-wire probe
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Experimental Results

1. The Propagation Velocity of a Disturbance in a
Supersonic Laminar Boundary Layer on a Flat Plate.
One of the problems encountered in the laminar boundary
layer stability program [9] was that of determining the
propagation velocity of a disturbance in the layer.
Disturbances originating near the leading edge of the
plate propagate along the plate as Tollmien waves at
their own propagation velocity. A disturbance generator
near the leading edge of a flat plate was a source of
single-frequency disturbances up to 90 kc. A phorocell
in the flat plate near the disturbance generator monitored
the frequency of the artificial disturbance. A hot wire in
or near the boundary layer also could detect the artificial
disturbance.

By taking the mean square of the difference of the
photocell and hot-wire output at the artificial disturbance
frequency and plotting this difference as the hot wire
was moved aft on the flat plate, a curve like that shown
in Fig. 2 could be obtained. The maxima correspond to
out-of-phase signals and the minima to in-phase signals.
The distance between maxima (or minima) is the wave-
length of the signal. The propagation velocity (wave
velocity) is then

U, =Xf=0.60U

where A is the wavelength, f the frequency of the dis-
turbance, and U the free-stream velocity.

Of incidental value to the above discussion, but
important in illustrating the versatility of the hot wire,
is the second curve on Fig. 2. This curve was obtained
by feeding the galvanometer output of the hot-wire
bridge to a servo system which kept the resistance of
the wire constant and the resistance bridge balanced by
moving the wire vertically in the boundary layer. Since
the laminar boundary layer profiles were similar, the wire
was maintained at a constant percentage of the boundary
layer thickness as the wire was moved aft. A laminar
boundary layer grows parabolically on a flat plate, which
is confirmed by the second curve in Fig. 2.

There is a second technique for determining the
propagation velocity which is not as accurate but
requires only a single hot-wire output and the fluctuation
mode diagram. The boundary layer oscillation may be
considered to be a moving wavy wall. For a stationary
Evaxiy wall with flow moving past, the pressure coefficient

10] is

Cp _ 2Au
Ur
and
AP
Cp =
Iuzp
2
and therefore
Au AP
br Yy2p
r
2
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Figure 2, Wavelength measurement of an artificial disturbance

or

in terms of the rms fluctuation, where U, is the relative
velocity past the stationary wavy wall, M, = U, /a, a is
the local speed of sound, and P the mean static
pressute. For a wavy wall moving at a propagation
velocity U., the free-stream velocity is then

U=U + U,
Substituting this in the above equation,
AP’
U, P
U Au'
M2

where M is the free-stream Mach number. Thus by
measuring AP'/P and Au'/U, U, may be calculated.
Furthermore, outside the boundary layer an isentropic
relation between fluctuations may be assumed:

AP

p P

Examination of the mode diagram of the artificial
disturbance in Fig. 3 taken outside the boundary layer
indicates that the plot of Ae'/Aer vs Aey,/Aer is a
straight line. The significance of this becomes apparent
from the mean square of the hot-wire equation

2
Ae!
AeT
ATF\ 2  Ae,
-2 R,
Tr Aep T

AT;, Am' Ae, Am'

+

TTm AeT m
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Figure 3. Fluctuation mode diagram, Ae l/Ae,r vs Aem/AeT

where the correlation coefficient is

me -
T AT} Am’
Since the mode diagram is a straight line, Ry = =1,

which indicates that Am and AT are anticorrelated,
and that obviously

Ae'
AeT

AT,
= +
Tr

Ae, Am'’

AeT m

It is clear then that the intercept of the straight line is
ATr/Tr and the slope is Am' /m.

From the isentropic relations and

Am Au Ap

- = —_— —

n U p
ATy AT Au

. =a—+ f—

g T U

the following is obtained:

Am Au 1 AP
—_— = — = —
m v v P
AT
AP A
—aly-1 (2= p2 22
T P U

Solving these two equations for Au/U and AP/P and
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taking rms values of the fluctuations, Au' /U and
AP'/P are found as a function of the known quantities
Am'/m and AT#+/Tr.

The propagation velocity determined from the use of
the mode diagram is U, /U = 0.60, and this result
compares well with U./U = 0.62, which is both the
theoretical value and that obtained by the first method
described. In the latter method the use of the mode
diagram plus the isentropic relations allowed a complete
determination of all of the fluctuating quantities outside
the edge of the oscillating laminar boundary layer.

From the G, for a wavy wall, it was then possible to
calculate the velocity of propagation of a Tollmien wave
of a given frequency.

2. Amplitude Distribution of Disturbances Across a
Supersonic Laminar Boundary Layer on a Flat Plate.
The fluctuation profile of the oscillation present in an
artificially disturbed laminar boundary layer was deter-
mined in f'8]. In Example 1, all of the fluctuating
quantities were determined outside the layer. Clearly
the isentropic relations will not be valid inside the
layer and another relation must be determined. By a
qualitative argument, which was substantiated by the
theory, it seemed likely that the pressure fluctuations
would be constant throughout the layer.

The mass flow and total temperature fluctuation
profiles were determined from mode diagrams and are
plotted in Fig. 4. The solution is shown only for the
supersonic region. The mode diagram and the
assumption of constant pressure fluctuations through
the layer result in two roots and an undetermined phase
relation between the pressure and velocity (or tempera-
ture) fluctuations. Near the outer edge of the layer the
phase could be determined by matching it to the one
just outside the layer. The two roots define two
completely different sets of velocity and temperature
distributions. The points shown in Fig. 5 correspond to
the roots of the hot-wire equation which were nearest
the theoretical curves. With respect to the pressure
fluctuations which are plotted in a positive sense, all
the points plotted in a positive sense are in phase and
those in a negative sense are 180 deg out of phase with
the pressure fluctuations. The results of the chosen set
of roots compare favorably with the theoretical solution.

3. Free-Stream Fluctuations in a Supersonic Wind
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Figure 4, Mass flow and total temperature fluctuations in a
laminar boundary layer



Tunnel. In low-speed wind tunnels the turbulence level

of the free stream has strongly affected certain types of oooos™— A R I 1 PN ]

experiments, and it is expected that fluctuations in a N 4 A=t | “’:Lr‘/ I’;ﬁ’-%—

supersonic flow field will also be important. The results L 0coos|— T+ E 5

of experiments conducted in the JPL supersonic wind & 4 \ 5! N

tunnels indicated that the fluctuations in the free stream & 1 y \ " Tarr 2

are sound radiation from the turbulent boundary layers § l 0 \ \775: Aoyu o

on the walls of the tunnel [11 and 12]. . \ /}/ T ——-
The employment of the hot wire in several types of @ -00004 \ 4

experiments helped establish this result. First, both \ "/

the Kovdsznay [2] and the Morkovin [4] types of mode 00008 | /

diagrams were made from data taken by the hot wire ' ! "/

near the center line of the tunnel; these results are k\ / L??UE%?)E)\JL;‘EBOAGL?VII/CH-RQ"B

shown in Figs. 6 and 7. The mode diagram of Fig. 6 is ~00012 ‘\ 7 8 et -

similar to that presented in the first example. Again the \;f/ . T’,‘;;e%gg'alz';_'gsm v

mass flow and total temperature fluctuations are anti- _0.0016 | ] | |

correlated. After considering the many possible types 0 0z 04 os 08 10 12 14 16

of fluctuations that could be present in the flow field, r/8

consistent with the mode diagrams of Figs. 6 and 7, it is

clear that the only possible simple fluctuation field is a Figure 5. Velocity, temperature, and pressure fluctuations in
pure sound field in which the isentropic relations between a laminar boundary layer

fluctuating quantities hold.

In a pure sound field the relation between the particle
velocity normal to the wave front Ay, and the pressure
AP can easily be changed to a relation between the
velocity variation in the direction of the mean flow Au
and AP. Of course, this relation is identical to the wavy
wall solution found in the first example. In fact, the

which is the intercept on the abscissa axis.
Substituting in the definition of g given above and
solving for n,

velocity for the sound field source may be determined n o= oM M
. . . . L. = &M -
from the relations derived in Example 1 by determining
Au' and AP’ as was done in Example 1. (y=1) M%2 1

Although the second type of mode diagram is not
needed to completely determine the problem, this type

. 2 _ ; The direction that the wave front makes with the mean
of mode diagtam will be presented to illustrate its

fow i
application. The hot-wire equation for a pure sound ow s -
field simplifies to [4] 0 = 180 deg — cos (nx)
, A The orientation of the waves and thereby the source
Ae €r . velocity may now be determined:
={f+g 77
Ae_ Ae, U, v-10, 1
where = =T
a a cos O
(y -1 M-
= — Y ) € ) whete U, is the relative velocity past a stationary
2 source and U, the source velocity in the boundary layer
lL+(y-D M when the free-stream velocity is U. Then
o E U
Yy+n, M) — M -1 — c 1
M —_—_ =1 -
g = U M cos &
1+ (y-—1) M2
When and for 6 = 180 deg — cos™ ' (n, ),
Ae'
Ve 1
e, Ae — =1+
=0, L S U Mnx
Ae
c f Therefore p!
Xhéch is the intercept on the ordinate axis. When A
e'/Ae =0, _f v, 1 P
£= 7he N —=1% =l-—
- '
U Mn Au
x ,),M2
Ae, o U
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Figure 6, Fluctuation mode diagram, Ae "/AeT vs Aem/AeT

The results of many of these measurements are plotted
n Fig. 8,

A second method of determining the velocity of the
disturbances in the boundary layer was simply to make
a time correlation measurement between two hot wires
in the flow field. This technique is comparable with the
space correlation measurement in the first example, and
the results are also presented in Fig. 8. The correlation
measurements were made near the higher Reynolds
number on Fig. 8 and the two methods of determining
the source velocity gave comparable results.

It should be mentioned that the level of fluctuations
in the tunnel increased with Mach number. At a given
Mach number the amplitude of the fluctuations in the
tunnel increased as the tunnel pressure and Reynolds
number were decreased. The wall boundary layers in-
creased in thickness with decreasing tunnel pressure
until they became laminar. At this point the amplitude
of the fluctuations sharply decreased. This provided
further evidence that the wall boundary layers act as a
source of moving disturbances which radiate sound into
the free stream of the tunnel.

Conclusions

The measurement of the mean-square output of the
fluctuating component of the voltage across a hot wire
at different operating temperatures is the key to
separating the components of an unsteady flow field in
supersonic flow. This is a result of the fact that the
sensitivity of the hot wire to the different fluctuating
components is a function of the operating temperature of
the wire. The separation of the fluctuating components
into entropy, vorticity, and sound modes and the use of
the fluctuation mode diagram to determine these modes
aid in the determination of the unsteady parameters in
supersonic flow fields.

The examples presented illustrate the use of mode
diagrams. The problems described also were compared
both with theory and with other measuring techniques
and the results compare favorably.

The hot wire is shown to be a valuable tool in
determining unsteady flow parameters in supersonic
flow.
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APPENDIX
Computation of Hot-Wire Fluctuations

To begin the outline of the computational technique,
the pertinent nomenclature and necessary data are
given as follows:

M free-stream Mach number

Tr  supply temperature, K

Pr  supply pressure, cm Hg
diameter of wire, cm

l length of wire, cm

K, heat conductivity of wire

K7 heat conductivity of air at Tr

Ry lead resistance

R,, heated resistance of wire

R, recovery resistance of wire (unheated)
fitst-order temperature coefficient of resistance

at 0°C
¥  second-order temperature coefficient of resistance
at 0°C
i wire current
Tt dKr
ny =%~ S = 0.885
T "Kp dTy 270°K < Tp < 350°K

mr =IZ 3’%’! = 0,765
®r T
pr  viscosity of air at Tp
Mt time constant of wire
Ae' tms fluctuation of voltage across wire

68

=1.4

Y
a =(1+0.2M%) for air
B =0.4 aM?
1. Calculate Re.: (Sutherland, viscosity)
y T+ 110.2
Rey = 0.636 x 10° Prd
5. 3 T2
(1+0.24°) T

2. From the Reynolds number determine infinite length
wire Nusselt number Nu_ from the following empirical
formulas:

For M > 1.2 and Rer < 16,

Nu_ = 0.00268 Re2 —0.0313 Re}/? -
1
0.154 Re + 0.0423 Re'® - 0.00528
For M > 1.2 and Re > 16,

Nu_ = -0.52 + 0.457 ReT

3. Calculate the recovery temperature ratio term
Rer dqn .
n ORer’

T,
= - = Re
n= T, n(Rer)
See Table A-1.
4, Calculate

i

= =
iy

d
For 1.2 <M < 1.5,
7= 0.95 + 0.043 (1.5 — M)®/?

For M 2 1.5,
97
am = °
5. For the end loss correction, calculate the follow-
ing:

Rw_Rr
al =
RI
Rf
R, =
1+ ag (T, - 219
R, R,
a, = a, —, Y, =Y —
R, R,

Note that Ry, = Ry {1 + ag(Tw — 273)+y Log( T, — 273)*1}
where T, is the heated-wire temperature

K1 = (0.666 + 0.0187) x 10°
End loss parameter:

d|Kn
Y=IVKr

Nu, = measured Nusselt number (see step 7)



Table A-1. Recovery temperature ratios for M > 1.2 e= iR,
. ReT aq a;}
er n I Tr = (1-a,7,)
n aReT wr ar T; w’r
1 1.04 0.057 " 0.239 %R, 0.239i%R_a R,
2 1.03 0.052 “m = -
" miKpT, T, mlKy (R, -R)
4 1.01 0.044
6 0.990 0.038
8 0.979 0.033 = Lo, T+ ay +a, %, 3, T, + 20))]
w
10 0.972 0.029
12 0.967 0.02 8. Calculate A,
. JR
14 0.964 0.023 gL v e
w
16 0.961 0.021 2 R, 9i
18 0.958 0.020 Experimentally it is easier to determine 4, from a plot
of
20 0.9% 0.019 2
i“R, ' R, -R,
25 0.954 0.016 Ve Gy =
R, - R, ’ R,
30 0.950 0.014
40 0.947 0.0 Within the scatter this plot is usually a straight line.
From this plot determine ¢, where
5 0.945 0.009
i’R,
100 0.945 0 d
R, R, 1
c = -
. da i R,
Nup= Nusselt number determined by inverse end loss
correction applied to infinite length wire R —R
Nupm should equal Nup; this provides a check on the wo T _
accuracy of the measurements. R.=R,
0.6 Y2 1.1 —
;\um = hru°° + ¢, + ¢ Nuw Then ,
1+ a., 1+ a':, A!L _ 4 :
ca
where Nu_ is found from step 2. 1-(1+a))
Rer 0Nu, 1-ca'
6. Calculate Num Wer : w
, 9. Calculate E':
Rer 0;\um \’ Nu_ (1 + alL) ReT dNu_ R, + R,
= € =
v .
Yy IRerp W (1 +a)y+0.55y | Moo OReq Ry, + Ry + 2
where dNu./dReT is calculated from step 2. , l-¢
7. Calculate e, r,,, Nu,,, and K, where e = the dc E = ’
voltage across the wire: 1+ 24,¢
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where R}, is the lead resistance and z is the ratio of
the open circuit voltage to the short circuit current.

10. Calculate the time constant correction. The time
constant equation is

o' A
Mp=———— (1= 2%a)
0.239 o, R,

i2(1+ 24,9

where ¢’ is the thermal capacity of the wire, The time
constant is determined by the square wave method for
each overheat value; the above equation is used to
check the experimental values rather than to determine
absolute values.

Determine from the time constant equation

MT arR'

m

i2(1+ 24, €

CT B 1 !
1-2%a, Aw

where MTm is the measure time constant. If My is
accurately determined, Cy_ will be the same for all

overheat values at a given tunnel condition. Since this
is not usually the case, an average Cr or a value that
is averaged by eliminating the poorest measurements is
determined. Then

T(average)

C

(measured)

M =M
Tm

T(corrected)

For the high frequencies encountered in supersonic flow
fields, Ae’ may be corrected by the following [14]:

M

T(corrected)

My

m

i ]
Ae'= A ¢(measured)
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11. Calculate sensitivity coefficients:

ReT 8Num

A

ReT

Aep = ek’ /f.':} - 97
Num dRep Toor n dRe,
A MoNu —
Aeu=Aep+eE'—w "o ! lj—-
a NumaM Twr 7 oM
ReT aNum
Aep = eE' | K+ 4. (K - 1.885 + 0.765
Num aReT
1 M aNum
+ —
2a Num oM
4, Re an 1 M an
— [ 0.765 — _— -
T or M JRe 2a m JM
Aea = Aep + a,XeT
Ne = ﬁ_\eT - Ne,

12. Calculate and plot the following:

Ae'

Ae

Ae’

T

Ae

=4

vs

Vs

.Sep

Ae

Ae

T

-+

Ae

24




